Asymmetric Diels-Alder Reactions of Cyclopentadiene in the Synthesis of Chiral Norbornene Derivatives

E. G. Mamedov ${ }^{a}$ and E. I. Klabunovskii ${ }^{b}$
${ }^{a}$ Institute of Petrochemical Processes, National Academy of Sciences of Azerbaidjan, Khodzhalinskii pr. 30, Baku, 1025 Azerbaidjan
${ }^{b}$ Zelinskii Institute of Organic Chemistry. Russian Academy of Sciences, Leninskii pr. 47, Moscow, 119991 Russia

Received April 6, 2007; revised March 3, 2008

Abstract

The review discusses available data on asymmetric Diels-Alder reactions of cyclopentadiene, which were published in the past decade. Both noncatalytic and catalytic (in the presence of achiral and chiral catalysts) versions of these reactions are considered. Effects of various factors on the chemical and optical yields, stereoselectivity, and optical purity of the Diels-Alder adducts are analyzed. Prospects in the development of this field of organic chemistry are examined.

DOI: 10.1134/S1070428008080010

1. Introduction 1097
2. Asymmetric Diels-Alder Reactions with Chiral Addends 1098
2.1. Noncatalytic Asymmetric Diels-Alder Reactions 1098
2.2. Asymmetric Diels-Alder Reactions in the Presence of Achiral Catalysts 1099
3. Asymmetric Diels-Alder Reactions in the Presence of Chiral Catalysts 1106
3.1. Chiral Aluminum-Containing Catalysts 1107
3.2. Chiral Boron-Containing Catalysts 1108
3.3. Chiral Titanium-Containing Catalyst 1110
3.4. Chiral Copper(II)-Containing Complexes 1112
3.5. Chiral Chromium(III), Iron(III), and Lanthanide-Containing Complexes 1113
4. Biological Activity 1116
5. Conclusion 1116
optically active compounds in practical pharmaceutical chemistry has become more and more important. The application of an optically active but not enantiomerically pure substance involves some limitations related to the therapeutic effect of the other enantio-

1. INTRODUCTION

Nowadays increasing number of medicines, fragrance substances, and agricultural chemicals are produced in their optically active forms. The use of

Klabunovskii Evgenii Ivanovich was born in 1923 in Putivl' (Ukrainian SSR). In 1944 he graduated from the Faculty of Chemistry, Moscow State Universitety. E.I. Klabunovskii is Doctor of chemical sciences, Professor, Honored Scientific Worker of the Russian Federation, Senior Research Worker at the Laboratory of Asymmetric Catalysis, Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences.
Fields of scientific interest: homogeneous and heterogeneous asymmetric catalysis, natural origin of homochirality.
mer. According to Pfeiffer's rule, the efficiency of an optically active substance is characterized by the enantiomer ratio $(E R)$ which is defined as the ratio of the therapeutic efficiencies of its enantiomers [1-9]. For example, (S)-Propranolol has an $E R$ value of 130. Some preparations must contain only one enantiomer if the other exhibits adverse properties. 3,4-Dihydroxyphenylalanine (DOFA) is an anti-Parkinson drug which is used as only L-DOFA, whereas D-enantiomer induces side effects. (S)-Penicillamine [7] is an antiarrhythmic drug, while its (R)-isomer is a mutagen; (S, S)-Ethambutol is an antituberculous drug with $E R 200$, while its (R, R)-enantiomer induces blindness. Different enantiomers may exert positive but different therapeutic effects; for example, $(2 R, 3 S)$-Darvon is an analgesic, while $(2 S, 3 R)$-Novrad is an antitussive drug. Finally, the (R)-enantiomer of Thalidomide is an analgesic, whereas (S)-Thalidomide exhibits a strong mutagenic effect [10]. If the other enantiomer has no adverse affect, it is not necessary to use optically pure substance in practice.

Advantages of optically active drugs are now completely recognized. For example, since 1994 till 1999 sales volume of optically active drugs has grown by a factor of 3 and reached 115 billion dollars in 1999 $[2,3,10]$.

Various methods for the preparation of optically active compounds are known; these include kinetic resolution, enzymatic and microbiological reactions, asymmetric synthesis, and asymmetric catalysis [11]; the latter seems to be the most promising. Bicyclo[2.2.1]heptane (or norbornane) skeleton constitutes a structural base of numerous biologically important natural compounds, such as borneol, camphor, etc. Many amines used as drugs are derivatives of norbornene, norbornane, and adamantane [12]. Cage-like amines having a norbornene fragment typically display antiviral activity. 2-(1-Aminoethyl)bicyclo[2.2.1]heptane hydrochloride known as viral inhibitor is readily obtained from norbornane as a mixture of two stereoisomers, endo-1a and exo-1b [13].

la

lb

Interest in norbornene derivatives is determined by their increased accessibility due to improvement of
procedures for the Diels-Alder reactions. In most cases, Diels-Alder reactions are highly selective; therefore, it becomes possible to reveal factors responsible for the reaction rate, reaction direction, and equilibrium in the absence and in the presence of catalysts. Asymmetric Diels-Alder reactions involving cyclopentadiene underlie one of the most promising and convenient methods for the synthesis of optically active norbornene derivatives. Norbornene is used as a model for studying mechanisms of some organic reactions $[14,15]$. Advances in the field of asymmetric Diels-Alder reactions of cyclopentadiene have been discussed in part in monographs [16-19] and review articles [20-23], as well as in [24].

The present review summarizes recently published results of studies on asymmetric Diels-Alder reactions of cyclopentadiene with various activated dienophiles. Two versions of asymmetric Diels-Alder reactions are known; the first of these involves introduction of an auxiliary chiral fragment into the diene or dienophile molecule, while the other is based on the use of chiral catalysts.

2. ASYMMETRIC DIELS-ALDER REACTIONS WITH CHIRAL ADDENDS

2.1. Noncatalytic Asymmetric Diels-Alder Reactions

Asymmetric Diels-Alder reaction was described for the first time in 1948 by Korolev and Mur [25] who studied reactions of substituted 1,3-butadienes with di-(-)-menthyl fumarate or maleic anhydride. Auxiliary chiral substituent was introduced into both dienophile and diene molecule. The noncatalytic reactions were carried out in xylene at $140^{\circ} \mathrm{C}$; after removal of the chiral fragment, the products were isolated with an optical yield (enantiomeric excess, ee) of 0.6-6.8\%.

The asymmetric Diels-Alder reaction of di-(-)menthyl fumarate with buta-1,3-diene was found to be strongly affected by ultrahigh pressure. The reaction at $70^{\circ} \mathrm{C}$ under atmospheric pressure takes 24 h and gives 98% of optically inactive product, while increased pressure favored formation of the positively rotating enantiomer. At 2500 MPa , the ee value was 2.9%, and at $5000 \mathrm{MPa}, 4.7 \%$ [26].

First studies in the series of uncatalyzed asymmetric Diels-Alder reactions showed relatively low stereo- and enantioselectivity. Therefore, asymmetric Diels-Alder reactions at fairly high temperatures without a catalyst have attracted little interest. During the past decade, only a few publications were concerned

Scheme 1.

with uncatalyzed asymmetric Diels-Alder reactions. 2-Aminobicyclo[2.2.1]hept-5-ene-2-carboxylic acid (4) was synthesized by reaction of cyclopentadiene with chiral dienophiles in toluene at room temperature [27]. After hydrolysis and hydrogenation of $\mathbf{3}$, the endo isomer of bicyclic amino acid 4 was isolated in 55% yield with ee 51\% (Scheme 1).

Asymmetric Diels-Alder reaction of α-sulfinylacrylate with cyclopentadiene at $0^{\circ} \mathrm{C}$ gave the corresponding adduct in a high chemical yield (81-94\%) but with low stereoselectivity and poor optical yield [28]. Nagatsuka et al. [29] studied asymmetric DielsAlder reactions of cyclopentadiene with chiral acrylates using natural carbohydrates, 6-deoxyglucopyranosides, as chiral reagents. After removal of the chiral fragment, (S)-enantiomer 5 was obtained with a low stereoselectivity (endo: exo $=79: 21$, ee $=13 \%$).

Noncatalytic asymmetric Diels-Alder reactions of cyclopentadiene with α, β-unsaturated sultams 6 were studied by Ho et al. [30] (Scheme 2). The reactions were carried out at $110^{\circ} \mathrm{C}$ (4 days), and the effect of

Scheme 2.

6

the substituent R on the enantio- and stereoselectivity was examined; adducts 7 and $\mathbf{8}$ were formed in 80% yield (ee $=25 \%$, endo-7: exo-8 = 7:3).

Optically active polybrominated norbornene derivatives were synthesized for the first time by uncatalyzed Diels-Alder reaction of polybromocyclopentadienes with (-)-menthyl acrylate in organic solvents (chlorobenzene, benzyl chloride, toluene) at $100-160^{\circ} \mathrm{C}$ (reaction time 6-10 h) [31]. Stereospecific cycloaddition reactions gave the corresponding adducts in up to 84% yield, ee being 17%. The same authors also described the synthesis of enantiomerically pure polybrominated norbornenecarboxylic acids and their derivatives by optical resolution of the racemic mixtures through diastereoisomeric salts with l-ephedrine.

Thus analysis of published data shows that uncatalyzed asymmetric Diels-Alder reactions do not ensure high asymmetric induction and stereoselectivity.

2.2. Asymmetric Diels-Alder Reactions in the Presence of Achiral Catalysts

The first example of catalytic asymmetric DielsAlder reaction, the reaction of buta-1,3-diene with di-(-)-menthyl fumarate [32], showed that its enantioselectivity increases in the presence of Lewis acids. The best results were obtained in toluene in the presence of TiCl_{4} : the corresponding (R, R)-stereoisomer was formed with an ee value of 78%. The reaction occurred at an appreciable rate at room temperature and even at $-70^{\circ} \mathrm{C}$.

In the past decade, asymmetric Diels-Alder reactions of cyclopentadiene in the presence of achiral catalysts have attracted researcher's attention, and chiral compounds have been synthesized with a high optical purity. Cycloaddition of chiral acrylates to cyclopentadiene has become a common model for studying asymmetric induction in Diels-Alder reactions, though incomplete endo-selectivity hinders analysis of the results. The stereoselectivity is usually estimated by analyzing mixtures of alcohols obtained after removal of auxiliary chiral fragment via reduction with LiAlH_{4}. A high enantioselectivity $(e e=80 \%)$ was
attained with the use of 3,3-dimethylbutan-2-ol as chiral alcohol [33]. (-)-8-Phenylmenthol (9) ensured even higher efficiency ($e e=99 \%$) [34, 35].

N -Substituted hydroxysuccinimide 10 obtained from (S)-(-)-malic acid (Scheme 3) was used as chiral reagent to synthesize a series of chiral dienophiles 10a-10c. Compounds $\mathbf{1 0 a}-\mathbf{1 0 c}$ reacted with cyclopentadiene at -78 to $0^{\circ} \mathrm{C}$ in the presence of TiCl_{4} to give adducts 11a-11d, and hydrolysis of the latter afforded carboxylic acids 12a-12d in 70-86\% yield ($e e=98 \%$) [36] (Scheme 4).

Scheme 3.

Chiral dienophiles, (E)-2-cyano-3-phenylprop-2enoic acid esters 18, were synthesized from chiral alcohols 13-17, and the subsequent [4+2]-cycloaddition to cyclopentadiene in the presence of $\mathrm{TiCl}_{4}, \mathrm{AlCl}_{3}$, or $\mathrm{AlCl}_{2} \mathrm{OEt}$ at -78 to $20^{\circ} \mathrm{C}$ gave adducts 19 with an optical yield of up to 89% [37] (Scheme 5).

Nieman and Keay [38] synthesized new chiral auxiliaries for asymmetric Diels-Alder reactions, cis,cis-spiro[4.4]nonane-1,6-diol (20) and chiral acrylates 21; their reactions with cyclopentadiene gave adducts 22 ($e e=97 \%$; diastereoselectivity $98-99 \%$ with respect to the endo isomer; Scheme 6). Achiral Lewis acids, such as $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{TiCl}_{4}, \mathrm{SnCl}_{4}, \mathrm{SbCl}_{5}, \mathrm{MeAlCl}_{2}$, and BCl_{3}, were used as catalysts. Esters 21 derived from spiro diol $\mathbf{2 0}$ were shown to be effective chiral reagents in catalytic asymmetric Diels-Alder reactions.

Nouguier et al. [39] reported on the effective synthesis of (2S)-bicyclo[2.2.1]hept-5-en-2-ylmethanol (5) in the presence of Lewis acids using fructose derivatives as chiral auxiliaries. Chiral alcohol $\mathbf{2 3}$ derived from D-fructose was converted into acrylate 24, and asymmetric Diels-Alder reaction of the latter with cyclopentadiene in the presence of Lewis acid $\left(\mathrm{SnCl}_{4}\right.$, EtAlCl_{2}) gave adduct 25 which was reduced to norbornene 5 with (S) configuration of the chiral center (C^{2}) (Scheme 7). Table 1 contains the reaction conditions (catalyst, temperature, reaction time), product compositions, and optical yields.

Asymmetric Diels-Alder reaction of benzyl (S)-2-(p-tolylsulfinyl)acrylates with cyclopentadiene in the presence of Lewis acids $\left[\mathrm{TiCl}_{4}, \mathrm{ZnCl}_{2}, \mathrm{ZnBr}_{2}\right.$, $\left.\mathrm{ZnI}_{2}, \mathrm{Eu}(\mathrm{fod})_{3}\right]$ at -70 to $20^{\circ} \mathrm{C}$ was studied in [40]. It was found that the asymmetric induction was relatively poor. In the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$ at $-20^{\circ} \mathrm{C}$, the optical yield of the corresponding norbornene derivative was 32%, while in the other cases it did not exceed 0.04-6.7\%.

13

14

15

16

17

Scheme 6.

$\mathrm{R}=t-\mathrm{Bu}, \mathrm{Ph}, 4-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$.
Scheme 7.

Scheme 5.

Camps et al. [41] were the first to use (R)- and (S)-3-hydroxy-4,4-dimethyl-1-phenylpyrrolidin-2-ones 26 as highly efficient chiral auxiliaries. Chiral esters obtained from alcohol 26 and acrylic, methacrylic, trans-crotonic, and trans-cinnamic acids reacted with cyclopentadiene in different organic solvents in the

presence of TiCl_{4}. In some cases, the asymmetric induction reached $96-97 \%$. For example, $(1 R, 2 R, 4 R)$ acid 11 was obtained with an optical yield of 97%

Table 1. Diels-Alder reaction of cyclopentadiene with acrylate 24

Lewis acid	Time, min	Temperature, ${ }^{\circ} \mathrm{C}$	Isomer composition, \%			Yield, \%
			(2S)endo	$(2 R)-$ endo	$\begin{gathered} (2 R+2 S)- \\ \text { exo } \end{gathered}$	
$\mathrm{Zn}_{2} \mathrm{Cl}_{4}$	40	0	>99	<1	2	>99
EtAlCl_{2}	40	0	75	25	5	>99
EtAlCl_{2}	360	-78	90	10	1	96

Scheme 8.

Scheme 9.

$$
\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Me}(\mathbf{a}), i-\operatorname{Pr}(\mathbf{b}) ; \mathrm{R}=\mathrm{MeO}, \mathrm{R}^{\prime}=i-\operatorname{Pr}(\mathbf{c}) .
$$

using chiral (R)-acrylate 27 as dienophile, while the (S)-enantiomer of $\mathbf{2 7}$ gave rise to ($1 S, 2 S, 4 S$)-acid $\mathbf{1 1}$ with an optical yield of 95% (Scheme 8).

Carreno et al. [42] studied asymmetric Diels-Alder reactions of cyclopentadiene with 5 - and 5,6-substi-
tuted (S)-2-(p-tolylsulfinyl)-1,4-benzoquinones 29a$\mathbf{2 9 c}$ in the presence of ZnBr_{2} and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in methylene chloride (Scheme 9). The data in Table 2 show that the stereo- and enantioselectivity of the cycloaddition depend on the temperature and nature of substit-

Table 2. Asymmetric Diels-Alder reaction of p-tolylsulfinyl-substituted benzoquinones 29a-29c with cyclopentadiene in methylene chloride

Quinone	Temperature, ${ }^{\circ} \mathrm{C}$	Lewis acid	Time, h	Yield, \%	Product ratio 30:31	$e e, \%$
29a	-20	-	48	63	$>97:<3$	>94
29a	-78	-	168	69	96:4	92
29a	-20	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	0.5	53	96:4	92
29a	-20	ZnBr_{2}	0.3	80	9:91	82
29a	-20	ZnBr_{2}	0.3	-	4:96	92
29b	-20	-	15	53	96:4	92
29b	-78	-	45	72	>95:<5	>90
29b	-78	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	0.75	76	98:2	96
29b	-78	ZnBr_{2}	1	70	$<3:>97$	>94
29c	-20	-	22	73	89:11	78
29c	-78	-	72	65	89:11	78
29c	-20	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	1	50	31:69	38
29c	-20	ZnBr_{2}	1	86	10:90	80
29c	-20	ZnBr_{2}	1	72	$<3 />97$	>97

Scheme 10.

Scheme 11.

Scheme 12.

$\mathrm{X}=\mathrm{Br}, \mathrm{MeO}$.
uent in the dienophile. Asymmetric Diels-Alder reactions of cyclopentadiene with (S, S)-2-(2-methoxy-naphthalen-1-ylsulfinyl)-1,4-benzoquinone, 2 -(p-meth-oxyphenylsulfinyl)-1,4-benzoquinone, and 2-(p-nitro-phenyl)-1,4-benzoquinone in the presence of $\mathrm{Eu}(\mathrm{fod})_{3}$,
$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$, and ZnBr_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were reported in [43]. Thermal Diels-Alder reactions of (-)-menthyl acrylate and allyl (-)-menthyl ether with perchlorocyclopentadiene at $100-160^{\circ} \mathrm{C}$ resulted in the formation of norbornene derivatives $(R)-(-)-\mathbf{3 3}$ and $(R)-(-)-35$, respec-
tively $(e e=15 \%)$ [44] (Scheme 10). The use of achiral Lewis acids $\left(\mathrm{Et}_{2} \mathrm{O} \cdot \mathrm{BF}_{3}, \mathrm{AlCl}_{3}, \mathrm{BBr}_{3}, \mathrm{SnCl}_{4}\right)$ as catalysts ensured increase in the optical yield by a factor of 2.8 (Scheme 11), the stereoselectivity of the process remaining unchanged: (S)-endo isomers 33 and 35 were formed exclusively (the structures of $\mathbf{3 3}$ and 35 shown in Schemes 10 and 11 do not reflect differences between enantiomers).

Likewise, asymmetric cycloaddition of polybromocyclopentadienes to (- -menthyl acrylate in the presence of achiral Lewis acids $\left(\mathrm{AlCl}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right.$, BBr_{3}, and SnCl_{4}) gave chiral polybromonorbornenes [45] (Scheme 12). The effects of various factors on the enantiomeric purity, isomeric composition, and yield
of the products were studied. Unlike uncatalyzed reaction [31], the catalytic process at $40-100^{\circ} \mathrm{C}$ provides exclusively ($2 R$)-endo-(+)-polybromonorbornene derivatives. The maximal optical yield (38-45\%) was obtained at $40^{\circ} \mathrm{C}$. The catalytic action of Lewis acids is rationalized in terms of formation of a complex with dienophile (Scheme 13).

The synthesis of optically active tetrachloronorbornenes by $[4+2]$-cycloaddition of tetrachlorocyclopentadiene to chiral dienophile, $(-)$-menthyl acrylate in the presence of achiral Lewis acids $\left(\mathrm{AlCl}_{3}, \mathrm{AlCl}_{3}\right.$. $\mathrm{OEt}_{2}, \mathrm{TiCl}_{4}, \mathrm{BBr}_{3}, \mathrm{SnCl}_{4}, \mathrm{BBr}_{3} \cdot \mathrm{OEt}_{2}$) in various organic solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right)$ at $40-100^{\circ} \mathrm{C}$ was studied in [46] (Scheme 14). Effects of

Scheme 13.

Scheme 14.

$\mathrm{X}=\mathrm{H}, \mathrm{MeO}$.
Scheme 15.

$\mathrm{R}=\mathrm{H}, \mathrm{Me}$.

Table 3. Cycloaddition of menthyl acrylate and menthyl methacrylate to cyclopentadiene in the presence of BBr_{3}

Dienophile	$T,{ }^{\circ} \mathrm{C}$	Solvent	$\begin{gathered} \text { Molar } \\ \text { ratio } \mathrm{BBr}_{3-} \\ \mathbf{4 2 (4 3)} \end{gathered}$	Yield of44/45, \%	endolexoIsomer ratio 44 (45), \%	$e e, \%$				$[\alpha]_{\mathrm{D}}^{20}(\mathrm{EtOH})$			
						46, 47	48, 49	50, 51	52, 53	46, 47	48, 49	50, 51	52, 53
42	20	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	90	86.4:13.6	21	20	30	24	+30.28	+29.42	+22.98	$+22.45$
42	-10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	81	91.7:8.3	32	30	49	-	+46.14	+45.13	+37.5	-
42	-40	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	73	98.7:5.3	40	31	53	-	+57.68	+55.3	+40.6	-
42	-70	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	62	96.5:3.5	69	-	80	-	+99.5	-	+88.31	-
42	-78	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	60	98.4:1.6	74	-	84	-	+104.470	-	+94.36	-
42	20	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.25	91	87.3:12.7	19	19	28	27	+27.4	+24.25	+22.20	+20.45
42	20	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.5	94	89.2:10.8	21	19	27	25	+27.10	+22.25	+22.19	+19.28
42	20	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.75	96	80.3:9.7	27	-	29	-	+30.28	-	+22.93	-
42	20	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	0.25	91	87.2:13.8	20	21	30	31	+29.25	+28.76	+21.97	+20.17
43	20	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	82	10:90	19	18	28	27	+20.12	+19.13	+19.33	+12.63
43	-10	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	63	11:89	28	27	47	45	+42.63	+41.09	+21.61	+20.59
43	-40	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	59	16:84	37	36	51	50	+49.16	+43.45	+23.45	+22.99
43	-70	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	54	13:87	57	56	66	65	+60.33	+56.61	+30.35	+34.19
43	-78	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	52	15:85	65	64	70	67	+68.87	+61.54	+32.19	+30.55

various factors on the chemical and optical yields of compounds 39-41, as well as on the reaction stereoselectivity, were examined; the $(+)$-adducts were found to have $(2 R)$ configuration. The reaction at $40^{\circ} \mathrm{C}$ in methylene chloride in the presence of BBr_{3} gave the corresponding adducts in 39% chemical yield and 40\% optical yield.

Asymmetric synthesis of bicyclo[2.2.1]hept-5-ene derivatives $\mathbf{4 6}-\mathbf{5 3}$ by cycloaddition of $(-)$-menthyl acrylate and (-)-menthyl methacrylate to cyclopenta-
diene in the presence of BBr_{3} was described in [47] (Scheme 15). The data on isomeric composition, yields, and enantiomeric purity of the products are collected in Table 3. The stereo- and enantioselectivity depend on the temperature and substituent R in the dienophile. The reaction in methylene chloride at $-78^{\circ} \mathrm{C}$ was characterized by 98.4% stereoselectivity, and the adducts had an optical purity of 84%.

Asymmetric synthesis of chiral norbornenes from di-(-)-menthyl fumarate and cyclopentadiene in the

Scheme 16.

Scheme 17.

presence of BBr_{3} and $\mathrm{BBr}_{3} \cdot \mathrm{OEt}_{2}$ was studied in [48-50]. Optically active norbornenes were thus obtained with high chemical (95%) and optical yields (91\%). A new chiral reagent, 2,2,2-trifluoro-1-(anthra-cen-9-yl)ethanol (53a), was synthesized [50], and the corresponding fumaric acid diester 53b was used as dienophile in the Diels-Alder reaction with cyclopentadiene at $-78^{\circ} \mathrm{C}$ in the presence of EtAlCl_{2} to obtain dicarboxylic acid 53d in 99% yield with an ee value of 82%. Diels-Alder reactions of cyclopentadiene provide a promising method for stereoselective synthesis of nitrogen-containing bicyclic compounds $\mathbf{A}-\mathbf{C}$ which can be used as ligands in chiral metal complex catalysts for asymmetric hydrogenation of prochiral ketones [50].

A

B

C

The reaction of cyclopentadiene with Schiff base 53e, catalyzed by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} / \mathrm{CF}_{3} \mathrm{COOH}$, leads to the formation of four diastereoisomeric adducts 53f-53i which can be readily separated by chromatography on silica gel [50] (Scheme 17). The yield of $\mathbf{5 3 f} \mathbf{- 5 3 i}$ is 70%, and the endolexo stereoselectivity is $55-45 \%$; the optical yield reaches 60%.

3. ASYMMETRIC DIELS-ALDER REACTIONS IN THE PRESENCE OF CHIRAL CATALYSTS

The first example of asymmetric Diels-Alder reaction with the use of a chiral catalyst [0.01 mol of $\mathrm{BF}_{3} \cdot$ MenthOEt (54)] was reported in 1976 [51]: the reaction of cyclopentadiene with ethyl acrylate was performed in methylene chloride at $30^{\circ} \mathrm{C}$ (reaction
time 2 h) (Scheme 18). Although its enantioselectivity was poor ($e e=3.3 \%$), this new approach was successfully developed [52,53]. Chiral metal complex catalysts (Lewis acids) were synthesized by reaction of EtAlCl l_{2} with optically active alcohols, such as $(-)$-menthol and (+)-borneol, and reactions of cyclopentadiene with dienophiles $\mathbf{5 6 a}-\mathbf{5 6} \mathbf{c}$ in the presence of these catalysts gave the corresponding adducts 57a$\mathbf{5 7} \mathbf{c}$ and $\mathbf{5 8 a}-\mathbf{5 8 c}$ with a chemical yield of up to 84% and $e e$ of up to 72%.

$$
\xrightarrow{\substack{\text { Catalyst, }-78^{\circ} \mathrm{C}}}
$$

The main requirement imposed on chiral catalysts for asymmetric Diels-Alder reactions is that they should contain fragments of optically active natural
compounds, such as menthol, derivatives of camphor, amino acids, and various diols and polyols capable of forming complexes with various metals [54].

3.1. Chiral Aluminum-Containing Catalysts

Hashimoto et al. [52, 53] were the first to use aluminum-containing chiral catalysts in asymmetric Diels-Alder reactions on the basis of cyclopentadiene. A number of norbornene derivatives were synthesized in high chemical and optical yields. Asymmetric Diels-Alder reactions of cyclopentadiene with methacrolein (59) and 2-bromoacrolein (64) in the presence of Al-containing chiral catalysts were studied in [55] (Schemes 20, 21).

Scheme 20.

Scheme 21.

The catalysts were synthesized by treatment of (S)-tyrosine, (S)-proline, or (-)-menthol applied onto silica gel with a solution of EtAlCl_{2}. The formation of

69
complexes $\mathbf{6 9}$ and 70 was assumed. The effect of the reaction conditions on the chemical and optical yields and isomeric composition of compounds $60-63$ and 65-68 was studied. The optical yield reached 31% in the presence of silica gel-supported (-)-menthol-Al-Lewis acid.

Naraku et al. [56] synthesized a new chiral catalyst from (-)-menthol derivative 9 and EtAlCl_{2} and used it in the cycloaddition of cyclopentadiene to 3-crotonoyl-1,3-oxazolidin-2-one in various solvents (methylene chloride, 1,2-dichloroethane, toluene, diethyl ether, dioxane) to obtain the corresponding adduct with an exolendo stereoselectivity of 96:4 and ee value of up to 66%. Heller et al. [57] described asymmetric cycloaddition of cyclopentadiene to methyl acrylate (71) in the presence of a chiral aluminum complex based on (S)-VAPOL (73) and $\mathrm{Et}_{2} \mathrm{AlCl}$ (Scheme 22). The reaction in methylene chloride at $-78^{\circ} \mathrm{C}$ gave adduct 72 in 60% yield with 99% endo-selectivity and 98.5% optical yield.

Scheme 22.

71

(S)-VAPOL, 73

Clerici et al. [58] reported on the cycloaddition of ethyl (5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4ylidene)acetate (74) to cyclopentadiene in the presence of aluminum complex with $(R)-(-)-1,1^{\prime}$-binaphthalene-$2,2^{\prime}$-diol in methylene chloride at -20 to $40^{\circ} \mathrm{C}(2-5 \mathrm{~h})$, which resulted in the formation of a mixture of endo and exo isomers 75 at a ratio of $70: 30$ (Scheme 23). Enantioselective cycloaddition of cyclopentadiene to N-hydroxy- N-phenylacrylamide (76) in the presence of (S)-binaphthol and $\mathrm{Me}_{3} \mathrm{Al}$ was studied in [59]

Scheme 23.

Scheme 24.

Scheme 25.

$\mathrm{R}=\mathrm{Pr}, \mathrm{Bu}, i-\mathrm{Bu}$.
(Scheme 24). Asymmetric Diels-Alder reactions of cyclopentadiene with alkyl acrylates 78 in the presence of $\mathrm{MenthOAlCl}_{2}$ were described in [60] (Scheme 25).

3.2. Chiral Boron-Containing Catalysts

As noted in the preceding section, the first asymmetric Diels-Alder reaction in the presence of a chiral catalyst [51] was performed using boron-containing compound. Later on, numerous studies were concerned with asymmetric Diels-Alder reactions catalyzed by chiral boron compounds. Various boron-containing catalysts with chiral ligands were successfully used in the recent years. It was found that the catalytic efficiency depends on the structure and electronic properties of the ligands. New boron compounds $\mathbf{8 0}$ and $\mathbf{8 1}$ [61] were used to catalyze asymmetric Diels-Alder

80

81
reactions of cyclopentadiene with acrolein to obtain unsaturated aldehydes 82a and 82b (Scheme 26).

Scheme 26.

(S)-82b

Polymeric materials obtained by copolymerization of chiral monomers containing amino alcohol, diol, and N-sulfonyl amino acid fragments were treated with BH_{3} and $\mathrm{BH}_{2} \mathrm{Br}$ and used as catalysts in the reaction of cyclopentadiene with methacrolein [62] (Scheme 27). Asymmetric Diels-Alder reactions of methacrolein with cyclopentadiene in the presence of boron-containing chiral catalysts based on prolinol, quinidine, and cinchonidine were studied in [63, 64]. The yield of adducts attained 90%, the stereoselectivity was 99%, and the optical yield ranged from 69 to 97%.

Scheme 27.

Ishihara et al. [65] proposed chiral boron-containing catalysts 83a-83e for asymmetric Diels-Alder reactions; these compounds constitute a new class of catalysts that are a combination of Brønsted and Lewis acids.

83a

83b-83e

$$
\mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Ph}(\mathbf{b}), \mathrm{Me}(\mathbf{c}), \mathrm{H}(\mathbf{d}) ; \mathrm{R}=\mathrm{Ph}, \mathrm{R}^{\prime}=\mathrm{H}(\mathbf{e})
$$

Catalysts 83a-83e were used in a model DielsAlder reaction of cyclopentadiene with methacrolein; they ensured synthesis of adduct $\mathbf{6 2}$ with a chemical yield of 97% and an optical yield of 99% [(2S)-configuration; Scheme 28].

Scheme 28.

New chiral catalysts were synthesized from biarenediols and bromoborane-dimethyl sulfide complex $\left(\mathrm{BH}_{2} \mathrm{Br} \cdot \mathrm{Me}_{2} \mathrm{~S}\right)$ and were used in asymmetric DielsAlder reaction of methacrolein with cyclopentadiene
[66]. The synthesis of new boron-containing Brønsted acid-assisted chiral Lewis acid (BLA) catalysts (optically active 2 -dichloroboryl-1,1'-binaphtholes) for enantioselective [4+2]-cycloaddition of α-unsubstituted and α-substituted α, β-unsaturated aldehydes to cyclopentadiene was described in $[67,68]$.

Asymmetric induction in the $[4+2]$-cycloaddition of diethyl 2-allylmalonate to substituted cyclopentadiene in the temperature range from 60 to $160^{\circ} \mathrm{C}$ in the presence of chiral boron-containing Lewis acids ($\mathrm{BBr}_{3} \cdot$ MenthOEt, $\mathrm{BF}_{3} \cdot$ MenthOEt, $\mathrm{BBr}_{2} \mathrm{OMenth}$) was studied in [69]. The use of chiral catalysts ensured preparation of optically active diethyl 2-(bicyclo[2.2.1]-hept-5-en-2-ylmethyl)malonates 85 (Scheme 29).

Scheme 29.

84

$\mathrm{X}=\mathrm{H}, \mathrm{Cl} ; \mathrm{Y}=\mathrm{H}, \mathrm{Cl}, \mathrm{MeO}$.
The effect of the reaction conditions on the yield, isomeric composition, and specific optical rotation $[\alpha]_{D}^{20}$ of adducts $\mathbf{8 5}$ was examined [70, 71]. Insofar as specific rotations of the pure enantiomers of $\mathbf{8 5}$ were unknown, the enantioselectivity of the reaction was judged by the specific rotation of the enantiomer mixture. Rise in the temperature resulted in increased overall yield, while the optical rotation decreased. The best results were obtained with the use of BBr_{3}. MenthOEt as catalyst. Asymmetric synthesis of polychloronorbornenes $\mathbf{8 6}$ from chlorinated cyclopentadienes was performed in the presence of chiral catalysts ($\mathrm{BBr}_{2} \mathrm{OM}$ Menth, $\mathrm{BBr}_{3} \cdot$ MenthOEt, $\mathrm{BF}_{3} \cdot$ MenthOEt) in toluene and methylene chloride at $40-100^{\circ} \mathrm{C}$ [70] (Scheme 30). The optical yields of compounds $\mathbf{8 6}$ depended on the temperature and reached $64-65 \%$ at $40^{\circ} \mathrm{C}$, the chemical yield being 43-49\%. Optically active brominated bicyclo[2.2.1]hept-5-ene-2-carboxylic acid derivatives were synthesized under analogous
conditions [71], and the results were consistent with those obtained in [70]. The use of chiral catalysts in Diels-Alder reactions with polybromocyclopentadienes makes it possible to reduce the reaction temperature from 160 to $100^{\circ} \mathrm{C}$ and raise the optical yield of the $(+)$-adduct from 15 to 68%, as compared to the uncatalyzed asymmetric synthesis [47].

Scheme 30.

Asymmetric Diels-Alder reactions of alkyl norbornenecarboxylates with cyclopentadiene in the presence of chiral boron-containing catalysts $\left[\mathrm{BBr}_{3} \cdot\right.$ MenthOEt, $\mathrm{BBr}_{2} \mathrm{OMenth}, \mathrm{BBr}(\mathrm{OMenth})_{2}$] were characterized by high stereo- and enantioselectivity [60, 72]. The reactions were carried out in the temperature range from 20 to $-70^{\circ} \mathrm{C}$ using various organic solvents (methylene chloride, benzene, toluene, chlorobenzene). At $-70^{\circ} \mathrm{C}$ in the presence of $\mathrm{BBr}_{2} \mathrm{OMenth}$ the optical yield reached 91%, the overall yield was 89%, and the endolexo-isomer ratio was 99:1. Asymmetric DielsAlder reactions leading to chiral norbornenecarboxylic and norbornenedicarboxylic acid esters were studied in detail in [73-75] using boron-containing complexes with (-)-menthol as catalysts. A number of aliphatic and alicyclic mono- and diesters of the bicyclo[2.2.1]heptene series were synthesized from cyclopentadiene and unsaturated aliphatic carboxylic acid esters, and the effect of the reaction conditions on the chemical and optical yields and stereoselectivity of the process was studied.

3.3. Chiral Titanium-Containing Catalyst

Titanium complexes as chiral catalysts for asymmetric Diels-Alder reaction were prepared for the first time on the basis of optically active diols [23]. Later on, a number of titanium-containing coordination compounds were synthesized from various optically active
compounds and were used to catalyze asymmetric [4+2]-cycloadditions. For example, Carpius and Jureza [76] studied the addition of cyclopentadiene to acrylamide and crotonamide in the presence of a chiral catalyst prepared from optically active $1,1^{\prime}$-binaphtha-lene- $2,2^{\prime}$-diol and TiCl_{4}. Asymmetric Diels-Alder reaction of cyclopentadiene with methyl acrylate in the presence of chiral titanium complex 87 gave adduct 72 with a high stereoselectivity (endo/exo-isomer ratio 98:2; ee = 50\%) [77] (Scheme 31).

Scheme 31.

(2R)-72

Narasaka et al. [78] synthesized chiral complexes 89 from diols 88 and dichlorodiisopropoxytitanium (Scheme 32) and used them in asymmetric DielsAlder reactions. The yield of adducts 91a and 91b at $-15^{\circ} \mathrm{C}$ was 93%, the endo/exo-isomer ratio (91a:91b) being 90:10 (ee = 92\%; Scheme 33). Asymmetric Diels-Alder reaction of dimethyl fumarate (92) with cyclopentadiene, catalyzed by chiral titanium complex 93, was reported in [79] (Scheme 34).

Scheme 32.

88

$\mathrm{R}=\mathrm{Me}, \mathrm{Bu} ; \mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{Bu}, \mathrm{Ph}$.

Scheme 33.

Scheme 34.

Titanium-containing catalysts for asymmetric Diels-Alder reactions were prepared from substituted $1,1^{\prime}$-binaphthalene-2,2'-diols 95 and TiCl_{4} [80]; these complexes catalyzed the synthesis of new chiral bicyclic aldehydes 97 having (S) configuration with a high optical yield (Scheme 35).

(R)-95
$\mathrm{R}=\mathrm{Ph}, \mathrm{Ph}_{3} \mathrm{Si},(i-\mathrm{Pr})_{3} \mathrm{Si}$.
Scheme 35.

96

97

$$
\mathrm{R}^{1}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{Me} .
$$

Other titanium complexes were obtained from chiral 4,5-bis[diaryl(hydroxy)methyl]-1,3-dioxolan-2ylphenols 98 and $\mathrm{Ti}\left(\mathrm{OCHMe}_{2}\right)_{2} \mathrm{Cl}_{2}$ [81]. The complexes were applied to polymeric materials in different
ways and used as heterogeneous catalysts in the asymmetric Diels-Alder reaction of 3-acryloyl-1,3-oxazoli-din-2-one ($\mathbf{9 0}$) with cyclopentadiene (see Scheme 33).

98
$\mathrm{R}=\mathrm{H}, \mathrm{Me} ; \mathrm{Ar}=\mathrm{Ph}, 3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$, 2-naphthyl, 4-MeOC ${ }_{6} \mathrm{H}_{4}$.

(1R,5R)-99
Scheme 36.

100

$$
\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{Me}, \mathrm{H} ; \mathrm{R}^{2}=\mathrm{H}, \mathrm{Me}, \mathrm{HOCOCH}_{2} .
$$

The optical yield of diastereoisomeric adducts 91a and 91b was 25%. Manickam and Sundararajan [82] synthesized a new chiral Ti(IV) complex with $(1 R, 5 R)$ -3-aza-3-benzyl-1,5-diphenylpentane-1,5-diol [(1R,5R)99] which effectively catalyzed the cycloaddition of cyclopentadiene to oxazolidinones $\mathbf{1 0 0}$ to obtain adducts 101 (Scheme 36). The yield of compounds 101 attained 92%, the endolexo stereoselectivity was 90:10, and the optical yield reached 65%.

3.4. Chiral Copper(II)-Containing Complexes

Chiral copper(II) complexes have been used in asymmetric Diels-Alder reactions relatively recently. Ghosh et al. [83] studied reactions of substituted aliphatic esters derived from glyoxylic acid in the presence of chiral $\mathrm{Cu}(\mathrm{II})$ complexes with bis(dihydrooxazoles). The yield of the adducts was $76 \%(e e=70 \%)$. Brimble and McEwan [84] reported on the asymmetric Diels-Alder reactions of substituted 1,4-naphthoquinones 102 with cyclopentadiene in the presence of chiral $\mathrm{Cu}(\mathrm{II})$ complexes based on compound $\mathbf{1 0 4}$ (Scheme 37).

Scheme 37.

103

Chiral copper(II) complexes were also synthesized using 2-(2-diarylphosphinophenyl)-4,5-dihydrooxazoles $\mathbf{1 0 5}$ as ligands [85]. The reactions were carried out by adding dienophile and diene to a solution of the catalyst. The best results were obtained in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or EtNO_{2} at -78 to $-20^{\circ} \mathrm{C}$ [yield of adducts 106 84-95\%, optical yield $87-97 \%$ ($2 S$), endolexo-isomer ratio 96:4; Scheme 38].

105
$\mathrm{R}=\mathrm{Me}, i-\mathrm{Pr}, t-\mathrm{Bu}, \mathrm{Ph} ; \mathrm{Ar}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$, naphthyl, anthryl.

Scheme 38.

(S)-106
$\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}, \mathrm{EtOCO}$.
In the recent time, much attention is given to organic reactions occurring in aqueous medium. The first examples of asymmetric Diels-Alder reactions in the presence of chiral $\mathrm{Cu}(\mathrm{II})$ complexes in aqueous medium were described in [86, 87]. Here, copper(II) complexes were prepared using natural amino acids as chiral ligands [L-valine, L-leucine, L-phenylalanine, L-tyrosine, L-tryptophane, and N^{α}-methyl-L-tryptophane (L-abrine)]. The complexes were found to be effective catalysts in the reaction of 3-phenyl-1-(pyri-din-2-yl)prop-2-en-1-one (107) with cyclopentadiene (Scheme 39). The best results were obtained using aromatic amino acids as ligands in the chiral copper(II)

Scheme 39.

108
complexes. Adduct $\mathbf{1 0 8}$ with $e e=74 \%$ was isolated in the reaction performed in the presence of 10% of the catalyst at room temperature (48 h). The effect of the solvent on the optical yield was studied (Table 4).

New chiral bis(dihydrooxazole) copper(II) complexes $\mathbf{1 0 9}$ successfully catalyzed the asymmetric Diels-Alder reactions of cyclopentadiene with 1-(oxa-zolidin-3-yl)prop-2-en-1-ones to give adducts $\mathbf{1 0 6 b}$ with high stereo- and enantioselectivity [88-90] (Scheme 40).

Scheme 40.

$\xrightarrow[e e>94 \%]{109(2-10 \%)}$

Sibi et al. [91] obtained new data on enhancement of enantioselectivity by studying the mechanism of chirality transfer in the Diels-Alder reaction between unsaturated ketones and cyclopentadiene in the presence of $15 \mathrm{~mol} \%$ of $\mathrm{Cu}(\mathrm{OTf})_{2}$ and a ligand. High chemical yield (90%) and endo-selectivity (97%) were achieved, the enantiomeric excess being 86%. Roelfes and Feringa [92] reported on the $\mathrm{Cu}(\mathrm{II})$-catalyzed reaction of cyclopentadiene with aza chalcone in the presence of DNA and nitrogen-containing ligands $\mathbf{1 1 0}$

Table 4. Asymmetric Diels-Alder reaction of 3-phenyl-1-(pyridin-2-yl)prop-2-en-1-one (107) with cyclopentadiene in the presence of copper(II) complex with N-methyl-L-tryptophane at $0^{\circ} \mathrm{C}$

Solvent	$e e, \%$
Acetonitrile	17
THF	24
Ethanol	39
Chloroform	44
Water	74

(Scheme 41). The reaction was carried out at room temperature (reaction time 3 days), and adduct $\mathbf{1 1 1}$ was formed with a high stereoselectivity (endo:exo $=$ 98:2). The ee value for the endo isomer attained 49%, and for the exo isomer, 90%. It was presumed that the enantioselectivity of this reaction is determined by chirality of the DNA double helix.

Scheme 41.

3.5. Chiral Chromium(III), Iron(III), and LanthanideContaining Complexes

In the recent years, various chiral complexes used previously in other asymmetric syntheses were tried as catalysts in asymmetric Diels-Alder reactions. Among these, chromium(III), iron(III), and lanthanide-containing complexes with chiral ligands occupy a specific place. Schaus et al. [93] described the synthesis of $\mathrm{Cr}(\mathrm{III})$ complexes 112 with Salen ligand, which were used as chiral catalysts in asymmetric [4+2]-cycloadditions involving cyclopentadiene. It was found that the reaction at $-20^{\circ} \mathrm{C}$ in the presence of 0.2% of the catalyst gives 94% of the corresponding adduct with an optical yield of 84%.

$\mathrm{X}=\mathrm{Cl}, \mathrm{F}, \mathrm{BF}_{4} ; \mathrm{Y}=t-\mathrm{Bu}, \mathrm{MeO}$.
Chromium(III) complex 113 was synthesized from $\mathrm{Cr}(\mathrm{CO})_{6}$ and $(1 R, 2 S)$-1,2,3,4-tetrahydronaphthalene-1,2-diol [94] (Scheme 42).

Scheme 42.

New chiral catalysts were obtained on the basis of complex $\mathbf{1 1 3}$ and such Lewis acids as BH_{3}. THF, $E t \mathrm{AlCl}_{2}$, and $\mathrm{Et}_{2} \mathrm{AlCl}$; these catalysts ensured high optical yield in the [4+2]-cycloaddition of cyclopentadiene to methacrolein (Scheme 43).

Scheme 43.

Table 5. Asymmetric Diels-Alder reaction of methacrolein with cyclopentadiene in the presence of rhodium complexes

Catalyst RhL, mol \%, $\mathrm{L}=$ $\mathbf{1 1 4 a}-\mathbf{1 1 4 c}$	$T,{ }^{\circ} \mathrm{C}$	Time, h	Yield, $\%$	Isomer composition (exo/endo $)$	ee, \%
$\mathbf{1 1 4 a (5)}$	20	24	62	$94: 6$	29
$\mathbf{1 1 4 b}(5)$	20	48	10	$90: 10$	2
$\mathbf{1 1 4 c}(1)$	20	24	45	$94: 6$	52
$\mathbf{1 1 4 c}(2)$	20	24	57	$94: 6$	53
$\mathbf{1 1 4 c}(2)$	0	72	81	$95: 5$	68

Iron(III) complexes with chiral bis(dihydrooxazoles) were used as catalysts in the Diels-Alder reaction of cyclopentadiene with 3-acryloyl-1,3-oxazo-lidin-2-one [95]. Adduct 106a was thus obtained in 95\% yield.

106a, $e e=82.2 \%$ endo:exo = $94: 4$

New chiral iron(III) Lewis acids were studied as catalysts in the reactions of cyclopentadiene with 3-alkenoyloxazolidin-2-ones [96, 97].

The synthesis of chiral half-sandwich rhodium dihydrooxazole complexes and their application in asymmetric Diels-Alder reactions were described in [98]. The complexes [$\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhClL}^{2} \mathrm{X}\left(\mathrm{X}=\mathrm{PF}_{6}, \mathrm{SbF}_{6}\right.$; $\mathrm{L}=$ ligand) were obtained in a good yield from bidentate ligands $\mathbf{1 1 4 a - 1 1 4 c}$ and rhodium salts $\left[\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{RhCl}_{2}\right]_{2}$, and their structure was determined by X-ray analysis. Table 5 contains the results of using these complexes as catalysts in the cycloaddition of methacrolein to cyclopentadiene (Scheme 44).

Scheme 44.

Giuseppone et al. [99] synthesized samarium(III) binaphthol complexes 115-117 which showed a fairly high efficiency in the cycloaddition of cyclopentadiene to unsaturated 3-acyloxazolidin-2-ones (Scheme 45). Asymmetric Diels-Alder reaction of acryloyloxazoli-

115

116

117
Scheme 45.

endo Isomer, 86-90\% exo Isomer, 10-14\%
$R=H, M e$.

Scheme 46.

121

exo-122a
dine with cyclopentadiene in the presence of $10 \mathrm{~mol} \%$ of a chiral lanthanum complex and molecular sieves in methylene chloride at -50 to $80^{\circ} \mathrm{C}$ showed a high enantioselectivity $[100,101]$: the adducts were isolated in an optical yield of 92%. New chiral 2, 2'-binaphthyldiimine Ni (II) complexes were used in asymmetric Diels-Alder reactions with cyclopentadiene to obtain the corresponding norbornene derivatives in 78% yield with ee 89% [102]. In the recent years, chiral natural organic compounds were used as catalysts in asymmetric Diels-Alder reactions [103]. For example, compounds 118-120 catalyzed [4+2]-cycloaddition of cyclopentadiene to various dienophiles. Table 6 contains the results of the reaction of cinnamaldehyde (121) with cyclopentadiene in the presence of amino acid catalysts 118-120 (Scheme 46).

Enantiomerically pure 2-aziridinylmethanols $\mathbf{1 2 3}$ prepared from aziridine-2-carboxylic acid esters were
used as catalysts in asymmetric Diels-Alder reaction of cyclopentadiene with unsaturated aldehydes [104] (Scheme 47). Adducts $\mathbf{1 2 2 b}$ and 122c were thus obtained in up to 88% yield; the optical yield of the exo isomer was 60%, and of the endo isomer, 57%.

Table 6. Asymmetric Diels-Alder reaction of cinnamaldehyde (121) with cyclopentadiene in the presence of organic catalysts

Catalyst	Time, h	Yield, $\%$	exolendo- $\mathbf{1 2 2 a}$	ee (\%) for exo isomer
(S)-ProOMe $\cdot \mathrm{HCl}$	27	81	$2.7: 1$	$48(2 R)$
(S)-AbrOMe $\cdot \mathrm{HCl}^{\mathrm{a}}$	10	80	$2.3: 1$	$59(2 S)$
$\mathbf{1 1 8}$	23	92	$2.6: 1$	$57(2 R)$
$\mathbf{1 1 9}$	84	82	$3.6: 1$	$74(2 R)$
$\mathbf{1 2 0}$	8	99	$1.3: 1$	$93(2 S)$

[^0]

Scheme 47.

4. BIOLOGICAL ACTIVITY

A specific feature of living matter is that almost all its chemical components having one or more asymmetric carbon atoms exist exclusively in a single stereochemical configuration possessing optical activity. Biochemical processes occurring in human organism are also stereospecific. As noted above, enantiomers having identical chemical properties often exhibit strongly different physiological activities.

Substituted bicyclo[2.2.1]heptenes are convenient synthons for the preparation of various physiologically active compounds, and they can be readily obtained as enantiomerically pure substances via asymmetric Diels-Alder reactions of cyclopentadiene, which are the subject of the present review. Amino derivatives of bicyclo[2.2.1]heptene system are good starting materials for the synthesis of effective biologically active compounds [105]. As early as 1972, Tager and Christensen [106] noted that aminonorbornanecarboxylic acid $\mathbf{1 2 4}$ is a physiologically active substance and that it could exhibit antiviral activity.

124
Methods of synthesis of amino acids of the norbornene series were reviewed in detail in [107]. A widely used procedure is based on the Diels-Alder reaction of
cyclopentadiene with derivatives of α, β-unsaturated α-amino acids [108-113] (Scheme 48). β-Substituted dienophiles can also be involved in this reaction. Diastereoselective and enantioselective versions have also been tested. Another approach utilizes the classical Strecker reaction [114, 115], the initial norbornan2 -one being synthesized according to Diels-Alder.

Scheme 48.

Biological activity of unsubstituted 2-aminonor-bornane-2-carboxylic acid (124) was studied in many aspects. It was shown that acid $\mathbf{1 2 4}$ is selectively transported by sodium-independent systems destined to transport hydrophobic amino acids to almost all cells. The transport system is selective for one diastereoisomer of $\mathbf{1 2 4}$ (endo or exo). Another kind of activity (glutaminase-activating) was revealed by incubation of 2-aminonorbornane-2-carboxylic acid 124 with a sample of rat mitochondria [116].

Several norbornenecarboxylic and norbornenedicarboxylic acid esters as different diastereoisomers and enantiomers were tested for antimicrobial activity against various species [24, $60,74,75,117-123]$, and their biological activity was compared with that of known antiseptics used in medical practice (ethanol, phenol, chloramine, rivanol, furacilin). These studies have shown that the endo isomers of norbornenecarboxylic acid are stronger antimicrobial agents than their exo isomers. Enantiomerically pure ester $(2 S)-(-)-\mathbf{1 2 6}$ is a more effective antimicrobial agent than racemate 125.

rac-125

(2S)-126

5. CONCLUSION

We can conclude that studies in the field of asymmetric Diels-Alder reactions with large-scale chemical products [124] with the goal of extending the series of available optically active norbornene and norbornane derivatives as synthons and biologically active substances are now rapidly developing. On the other hand,
analysis of published data indicates that asymmetric [4+2]-cycloadditions of cyclopentadiene have not been explored in sufficient detail and that the available data are not systematic. No detailed studies on the mechanism of asymmetric Diels-Alder reaction have been performed, though such studies would be useful for prediction of the results of reactions with a view to obtain new biologically active compounds.

Factors responsible for high regio-, stereo-, and enantioselectivity of asymmetric Diels-Alder reactions and their relative contributions under different reaction conditions attract much interest from both theoretical and practical viewpoints; therefore studies in this field seems to be very important.

Recent advances in performing selective asymmetric Diels-Alder reactions could give rise to development of large-scale processes for manufacture of optically active medical agents. In this respect, a specific place should be occupied by studies on Diels-Alder reactions in the presence of chiral catalysts. Diversity of action of chiral complexes with various metals in asymmetric catalysis has been demonstrated using Diels-Alder reaction as an example. In the future, extension of the series of available methods for the synthesis of new complexes from readily accessible ligands and transition metals should be expected.

Further extension of the diene and dienophile series via inclusion of new complex structures, as well as the use of highly effective chiral catalysts in asymmetric Diels-Alder reactions, should open new prospects in synthesizing previously inaccessible or difficultly accessible biologically active compounds belonging to various structural types. One of the most urgent problems of organic synthesis is preparation of useful compounds by practically reasonable methods [125].

REFERENCES

1. Sheldon, R.A., Chirotechnology. Industrial Synthesis of Optically Active Compounds, New York: Marcel Dekker, 1993.
2. Klabunovskii, E.I., Katal. Promst., 2006, no. 4, p. 52.
3. Asymmetric Catalysis on Industrial Scale. Challenges, Approaches, and Solutions, Blaser H.U. and Schmidt, E., Eds., Weinheim: Wiley, 2004.
4. Klabunovskii, E.I., Smith, G.V., and Zsigmond, A., Heterogeneous Enantioselective Hydrogenation. Theory and Practice, Dordrecht: Springer-SBM, 2006.
5. Klabunovskii, E.I., Katal. Promst., 2005, no. 2, p. 3.
6. Klabunovskii, E.I. and Sheldon, R., Cattech, 1997, no. 1, p. 153.
7. Murzin, D.Yu., Maki-Arvela, P., Toukoniitty, E., and Salmi, T., Catal. Rev., 2005, vol. 47, p. 175.
8. Stereoselective Biocatalysis, Patel, R.N., Ed., New York: Marcel Dekker, 2000; Kochetkov, K.A., Doctoral (Chem.) Dissertation, Moscow, 2002.
9. Burk, M.J. and Bienewald, F., Transition Metals for Organic Synthesis and Fine Chemicals, Weinheim: Wiley, 1998, vol. 2, p. 13.
10. Murzin, D.Yu. and Maki-Arvela, P., Kinet. Katal., 2003, vol. 44, p. 353.
11. Blaser, H.U., Spindler, F., and Studer, M., Appl. Catal. A: General, 2001, vol. 221, p. 119.
12. Kas'yan, L.I., Tarabara, I.N., and Kas'yan, A.O., Russ. J. Org. Chem., 2002, vol. 38, p. 19.
13. Kas'yan, A.O., Krishchik, O.V., Krasnovskaya, O.Yu, and Kas'yan, L.I., Russ. J. Org. Chem., 1998, vol. 34, p. 1731.
14. Kas'yan, L.I., Okovityi, S.I., Bombushkar', M.F., and Dryuk, V.G., Russ. J. Org. Chem., 2000, vol. 36, p. 195.
15. Konovalov, A.I. and Kiselev, V.D., Izv. Ross. Akad. Nauk, Ser. Khim., 2003, p. 279.
16. Morrison, J.D. and Mosher, H.S., Asymmetric Organic Reactions, Englewood Cliffs, NJ: Prentice-Hall, 1971.
17. Asymmetric Synthesis, Morrison, J.D., Ed., New York: Academic, 1985, vol. 5.
18. Taber, D.F., Intermolecular Diels-Alder and Ene Reactions, Berlin: Springer, 1984.
19. Nogradi, M., Stereoselective Synthesis, Weinheim: VCH, 1987. Translated under the title Stereoselektivnyi sintez, Moscow: Mir, 1989, p. 343.
20. Oppolzer, W., Angew. Chem., Int. Ed. Engl., 1977, vol. 16, p. 10.
21. Oppolzer, W., Angew. Chem., Int. Ed. Engl., 1984, vol. 23, p. 876.
22. Narasaka, K., Synthesis, 1991, no. 1, p. 1.
23. Kagan, H.B. and Riant, O., Chem. Rev., 1992, vol. 92, p. 1007.
24. Mamedov, E.G., Doctoral (Chem.) Dissertation, Baku, 2003.
25. Korolev, A.I. and Mur, V.I., Dokl. Akad. Nauk SSSR, 1948, vol. 59, p. 251; Zh. Obshch. Khim., 1948, vol. 18, p. 1977.
26. El'yanov, B.S., Klabunovskii, E.I., Gonikberg, M.G., Parfenova, G.M., and Godunova, L.F., Izv. Akad. Nauk SSSR, Ser. Khim., 1966, p. 1678; El'yanov, B.S., Klabunovskii, E.I., Gonikberg, M.G., Parfenova, G.M., and Godunova, L.F., Izv. Akad. Nauk SSSR, Ser. Khim., 1971, p. 1658; El'yanov, B.S., Murina, I.P., Klabunovskii, E.I., Petrov, Yu.I., and Parfenova, G.M., Izv. Akad. Nauk SSSR, Ser. Khim., 1972, p. 1863; El'yanov, B.S. and Klabunovskii, E.I., Abstracts of Papers, Simpozium. Stroenie, reaktsionnaya sposobnost' i mekhanizm prevrashchenii soedinenii s kratnymi svyazyami i malymi
tsiklami (Symposium. Structure, Reactivity, and Mechanism of Transformations of Compounds with Multiple Bonds and Small Rings), Leningrad: Khimiya, 1967, p. 77.
27. Chinchilla, R., Falsello, L.R., Galindo, N., and Najera, C., Tetrahedron: Asymmetry, 1999, vol. 10, p. 821 .
28. Yang, T.-K., Chen, Ch.-J., Lee, D.-Sh., Yong, T.-T., Jiang, Y.-Z., and Mi, A.Q., Tetrahedron: Asymmetry, 1996, vol. 7, p. 57.
29. Nagatsuka, T., Yamaguchi, Sh., and Totani, K., Synlett, 2001, p. 481.
30. Ho, K.F., Dennis, C.W., and Wung, W.Y., Tetrahedron Lett., 2001, vol. 42, p. 3124.
31. Mamedov, E.G., Russ. J. Org. Chem., 2002, vol. 38, p. 15.
32. Walborsky, H.M., Barash, L., and Davis, T.S., Tetrahedron, 1963, vol. 19, p. 2333.
33. Sauer, J. and Kredel, J., Tetrahedron Lett., 1966, vol. 7, p. 731.
34. Correy, E.D. and Ensley, H.E., J. Am. Chem. Soc., 1975, vol. 97, p. 6908.
35. Ensley, H.E., Purnell, C.A., and Correy, E.D., J. Org. Chem., 1978, vol. 43, p. 1610.
36. Poll, T., Abdel, H., Hady, A.F., Karge, R., Linz, G., Weetman, J., and Helmchen, G., Tetrahedron Lett., 1989, vol. 30, p. 5595.
37. Cativiela, C., Mayoral, J.A., Avernoza, A., Peregrina, M., Lahoz, F.J., and Gimeno, S., J. Org. Chem., 1992, vol. 57, p. 4664.
38. Nieman, J.A. and Keay, B.A., Tetrahedron: Asymmetry, 1996, vol. 7, p. 3521.
39. Nouguier, R., Mignon, V., and Gras, J.L., J. Org. Chem., 1999, vol. 64, p. 1412.
40. Carretero, J.C., Garcia Ruano, J.L., and Martin Cabrejas, L.M., Tetrahedron: Asymmetry, 1997, vol. 8, p. 2215.
41. Camps, R., Font-Bardia, M., Gimenez, S., Perez, F., Solans, X., and Soldevilla, N., Tetrahedron: Asymmetry, 1999, vol. 10, p. 3123.
42. Carreno, M.C., Garcia Ruano, J.L., Lafuente, C., and Toledo, M.A., Tetrahedron: Asymmetry, 1999, vol. 10, p. 1119.
43. Carreno, M.C., Garcia Ruano, J.L., Urbano, A., Remor, C.Z., and Arroyo, Y., J. Org. Chem., 2000, vol. 65, p. 453.
44. Akhmedov, I.M., Peynircioglu, B., Mamedov, E.G., Tanyeli, C., and Demir, A.S., Tetrahedron, 1994, vol. 50, p. 2099.
45. Mamedov, E.G., Azerb. Khim. Zh., 2002, no. 1, p. 60.
46. Mamedov, E.H., J. Proc. Petrochem. Oil Refin., 2003, no. 2, p. 41.
47. Mamedov, E.G., Russ. J. Org. Chem., 2001, vol. 37, p. 217.
48. Mamedov, E.G., Abstracts of Papers, V Bakinskaya mezhdunarodnaya neftekhimicheskaya konferentsiya (Vth Baku Int. Conf. on Petrochemistry), Baku, 2002, p. 66.
49. Mamedov, E.G. and Gasanov, A.G., Abstracts of Papers, Simpozium "Vedushchie napravleniya khimii i tekhnologii" (Symp. "Leading Directions of Chemistry and Technology"), Baku, 2002, p. 66.
50. Mamedov, E.G. and Gasanov, A.G., Prots. Neftekhim. Nefteper., 2001, no. 4, p. 32; Polamino-Schatzlein, M., Virgili, A., and Yaime, C., Teterahedron: Asymmetry, 2006, vol. 17, p. 3237; Alonso, D.A., Guijarro, D., Pinbo, S., Temme, O., and Andersson, P.G., J. Org. Chem., 1998, vol. 63, p. 2749; Sodergen, M.Y., Bertlillson, S.K., and Andersson, P.G., J. Am. Chem. Soc., 2000, vol. 122, p. 6610; Trifonova, A. and Andersson, P.G., Tetrahedron: Asymmetry, 2004, vol. 15, p. 445 .
51. Guseinov, M.M., Akhmedov, I.M., and Mamedov, E.G., Azerb. Khim. Zh., 1976, no. 1, p. 46.
52. Hashimoto, S., Komeshima, N., and Koga, K., J. Chem. Soc., Chem. Commun., 1979, p. 437.
53. Koga, K., Hashimoto, S., and Ionoshimo, N., JPN Patent Appl. no. 53-138926, 1978; Ref. Zh., Khim., 1981, no. 19N 81 P.
54. Gavrilov, K.N., Bondarev, O.G., and Polosukhin, A.I., Usp. Khim., 2004, vol. 73, p. 726.
55. Fraile, J.M., Garcia, J.I., Mayoral, J.A., and Royo, A.J., Tetrahedron: Asymmetry, 1996, vol. 7, p. 2263.
56. Naraku, G., Hori, K., Ito, Y.N., and Katsuki, T., Tetrahedron Lett., 1997, vol. 38, p. 8231.
57. Heller, D.P., Goldberg, R., and Wulff, W.D., J. Am. Chem. Soc., 1997, vol. 119, p. 10551.
58. Clerici, F., Gelmi, M.L., and Gambini, A., J. Org. Chem., 2001, vol. 66, p. 4941.
59. Corminboeuf, O. and Renaud, P., Org. Lett., 2003, vol. 4, p. 1731.
60. Mamedov, E.G., Gasanov, A.G., Guseinov, N.S., Efendieva, K.M., Mamedova, I.M., and Ayubov, I.G., Azerb. Khim. Zh., 2003, no. 2, p. 35.
61. Lohray, B.B. and Bhrushan, V., Angew. Chem., Int. Ed. Engl., 1992, vol. 31, p. 729.
62. Itsuno, S., Kamahori, K., Watanabe, K., Koizumi, T., and Ito, K., Tetrahedron: Asymmetry, 1994, vol. 5, p. 523.
63. Aggarwal, V.K., Andersson, E., Giles, R., and Zaparucha, A., Tetrahedron: Asymmetry, 1995, vol. 6, p. 1301.
64. Kamahori, K., Tada, S., Ito, K., and Itsuno, S., Tetrahedron: Asymmetry, 1995, vol. 6, p. 2547.
65. Ishihara, K., Kurihara, H., and Yamamoto, H., J. Am. Chem. Soc., 1996, vol. 118, p. 3049.
66. Bao, J. and Wulff, W.D., Tetrahedron Lett., 1995, vol. 36, p. 3221.
67. Ishihara, K., Kurihara, H., Matsumoto, M., and Yamamoto, H., J. Am. Chem. Soc., 1998, vol. 120, p. 6920.
68. Ishihara, K., Inanaga, K., Konda, S., Funahashi, M., and Yamamoto, H., Synlett, 1998, p. 1053.
69. Mamedov, E.G., Azerb. Khim. Zh., 2001, no. 3, p. 27.
70. Mamedov, E.G., Gasanov, A.G., Azizov, A.G., Mamedov, E.Sh., and Babaeva, S.S., Dokl. Nats. Akad. Nauk Azerb., 2002, vol. 58, p. 183.
71. Mamedov, E.G., Prots. Neftekhim. Nefteper., 2002, no. 2, p. 61.
72. Mamedov, E.G., Gasanov, A.G., Guseinov, N.S., and Alieva, S.T., Abstracts of Papers, V Bakinskaya mezhdunarodnaya neftekhimicheskaya konferentsiya (Vth Baku Int. Conf. on Petrochemistry), Baku, 2002, p. 65.
73. Mamedov, E.G., Gasanov, A.G., Alieva, S.T., Ayubov, I.G., and Efendieva, K.M., Abstracts of Papers, Konferentsiya, posvyashchennaya 95-letnemu yubileyu Akademika M.F. Nagieva (Conf. Dedicated to 95th Jubilee of Academician M.F. Nagiev), Baku, 2003, p. 137.
74. Gasanov, A.G., Mamedov, E.G., Ayubov, I.G., Guseinov, N.S., and Babaeva, R.Z., Prots. Neftekhim. Nefteper., 2005, no. 2, p. 19.
75. Mamedov, E.G., Gasanov, A.G., Babaeva, R.Z., and Ayubov, I.G., Azerb. Khim. Zh., 2006, no. 1, p. 31.
76. Carpius, C. and Jureza, K.F., Helv. Chim. Acta, 1987, vol. 70, p. 437.
77. Seebach, D., Beck, A.K., Inwikelried, R., Roggos, S., and Wannacott, A., Helv. Chim. Acta, 1987, vol. 70, p. 954.
78. Narasaka, K., Iwasawa, N., Inoue, M., Yamada, T., Nakashima, M., and Sugimori, J., J. Am. Chem. Soc., 1989, vol. 111, p. 5340.
79. Devine, P.N. and Oh, T, J. Org. Chem., 1992, vol. 57, p. 396.
80. Naruoka, K., Murase, N., and Yamamoto, H., J. Org. Chem., 1993, vol. 58, p. 2938.
81. Altava, B., Burguete, M.I., Eskuder, B., Luis, S.V., and Salvador, R.V., J. Org. Chem., 1997, vol. 62, p. 3126.
82. Manickam, G. and Sundararajan, G., Tetrahedron: Asymmetry, 1999, vol. 10, p. 2913.
83. Ghosh, A.K., Mathivanan, P., Capiello, J., and Krishnan, K., Tetrahedron: Asymmetry, 1996, vol. 7, p. 2165.
84. Brimble, M.A. and McEwan, J.F., Tetrahedron: Asymmetry, 1997, vol. 8, p. 4069.
85. Sagasser, I. and Helmchen, G., Tetrahedron Lett., 1998, vol. 39, p. 261.
86. Otto, S., Boccaletti, G., and Engberts, J.B., J. Am. Chem. Soc., 1998, vol. 120, p. 4238.
87. Otto, S. and Engberts, J.B., J. Am. Chem. Soc., 1999, vol. 121, p. 6798.
88. Evans, D.A., Miller, S.Y., Lectka, T., and Matt, P., J. Am. Chem. Soc., 1999, vol. 121, p. 7559.
89. Evans, D.A., Barnes, D.M., Johnson, J.S., Lectka, T., and Matt, P., J. Am. Chem. Soc., 1999, vol. 121, p. 7582.
90. Evans, D.A., Johnson, J.S., and Olhava, E.J., J. Am. Chem. Soc., 2000, vol. 122, p. 1635.
91. Sibi, M., Venkataraman, L., Lui, M., and Jasperse, C., J. Am. Chem. Soc., 2001, vol. 123, p. 8444.
92. Roelfes, G. and Feringa, B., Angew. Chem., Int. Ed., 2005, vol. 44, p. 3230.
93. Schaus, S.E., Branalt, J., and Jacobsen, E.N., J. Org. Chem., 1998, vol. 63, p. 403.
94. Jones, G.B. and Guzel, M., Tetrahedron: Asymmetry, 2000, vol. 11, p. 1267.
95. Corey, E.J., Imai, N., and Zhang, H.-Y., J. Am. Chem. Soc., 1991, vol. 113, p. 728.
96. Zhen, Q., Xue, S., and Quinq-Hua, B., Chin. Chem. Lett., 2004, vol. 15, p. 1015.
97. Armó, M., Picher, M.T., Domingo, L.R., and Andrés, J., Chem. Eur. J., 2004, vol. 10, p. 4742.
98. Davenport, A.J., Davies, D.L., Fawcett, J., Garratt, S.A., Lad, L., and Russell, D.R., Chem. Commun., 1997, no. 13, p. 2347.
99. Giuseppone, N., Santos, I., and Collin, J., Tetrahedron Lett., 2000, vol. 41, p. 639.
100. Desimonti, G., Foila, G., and Guila, M., J. Org. Chem., 2003, vol. 68, p. 7862.
101. Yamauchi, M., Itai, K., and Honda, Y., Chem. Pharm. Bull., 2002, vol. 50, p. 1255.
102. Suga, H., Kakehi, A., and Mitsuda, M., Bull. Chem. Soc. Jpn., 2004, vol. 77, p. 561.
103. Ahrendit, K.A., Borths, C.J., and McMillan, D.W.C., J. Am. Chem. Soc., 2000, vol. 122, p. 4243.
104. Bonini, B.F., Capitò, E., Comes-Franchini M., Fochi, M., Ricci A., and Zwanenburg, B., Tetahedron: Asymmetry, 2006, vol. 17, p. 3135.
105. Kas'yan, A.O., Tarabara, I.N., Zlenko, E.T., Okovityi, S.I., and Kas'yan, L.I., Russ. J. Org. Chem., 1999, vol. 35, p. 1018.
106. Tager, H.S. and Christensen, H.N., J. Am. Chem. Soc., 1972, vol. 94, p. 968.
107. Komarov, I.V., Grigorenko, A.O., Gurov, A.V., and Khilya, V.P., Usp. Khim., 2004, vol. 73, p. 849.
108. Ezquerra, J., Pedregal, C., and Collado, I., Tetrahedron, 1995, vol. 51, p. 10197.
109. Bufnuel, E., Cativiela, C., and Diazande-Villegas, M.D., Tetrahedron: Asymmetry, 1996, vol. 7, p. 1521.
110. Clerici, F., Gelmi, M.I., and Gambini, A., J. Org. Chem., 2000, vol. 65, p. 6138.
111. Burkett, B.A. and Chai, C.L.L., Tetrahedron Lett., 2000, vol. 41, p. 6661.
112. Clerici, F., Gelmi, M.I., and Gambini, A., J. Org. Chem., 2001, vol. 66, p. 4941.
113. Abellian, T., Mancheno, B., Nayera, C., and Sansano, Y.M., Tetrahedron, 2001, vol. 57, p. 6677.
114. Layton, W.J., Smith, S.L., Crooks, P.A., Deeks, T., and Waigh, R.D., J. Chem. Soc., Perkin Trans. 1, 1984, p. 1283.
115. Ito, H., Saito, A., Kakuuchi, A., and Taguchi, T., Tetrahedron, 1999, vol. 55, p. 12741.
116. Zaleski, J., Wilson, D.F., and Erecinska, M., J. Biol. Chem., 1986, vol. 261, p. 14091.
117. Gasanov, A.G., Mamedov, E.G., and Alieva, S.T., Azerb. Khim. Zh., 2005, no. 1, p. 77.
118. Babaeva, R.Z., Mamedov, E.G., Gasanov, A.G., Ayubov, I.G., and Mamedova, G.F., Materialy II respublikanskoi nauchnoi konferentsii "Molodoi khimik" (Proc. IInd Republican Scientific Conf. "Young Chemist"), Baku, 2006, p. 121.
119. Mamedova, G.F., Mamedov, E.G., Ayubov, I.G., Gasanov, A.G., and Babaeva, R.Z., Materialy II respublikanskoi nauchnoi konferentsii "Molodoi khimik" (Proc. IInd Republican Scientific Conf. "Young Chemist"), Baku, 2006, p. 123.
120. Babaeva, R.Z., Mamedov, E.G., Alieva, S.T., Ayubov, I.G., and Mamedova, G.F., Materialy II respublikanskoi nauchnoi konferentsii "Molodoi khimik" (Proc. IInd Republican Scientific Conf. "Young Chemist"), Baku, 2006, p. 124.
121. Mamedov, E.G., Gadzhieva, O.B., and Mamedova, G.F., Materialy konferentsii, posvyashchennoi 85letnemu yubileyu prof. A.S. Samedova (Proc. Conf. Dedicated to 85 -Year Jubilee of Prof. A.S. Samedov), Baku: Nurlan, 2006, p. 88.
122. Mamedov, E.G., Gadzhieva, O.B., Akhundova, E.A., and Mamedova, G.F., Materialy konferentsii, posvyashchennoi 85-letnemu yubileyu prof. A.S. Samedova (Proc. Conf. Dedicated to 85 -Year Jubilee of Prof. A.S. Samedov), Baku: Nurlan, 2006, p. 94.
123. Mamedov, E.G., Gadzhieva, O.B., Zeinalova, S.G., and Babaeva, R.Z., Materialy konferentsii, posvyashchennoi 85-letnemu yubileyu prof. A.S. Samedova (Proc. Conf. Dedicated to 85 -Year Jubilee of Prof. A.S. Samedov), Baku: Nurlan, 2006, p. 96.
124. Gasanov, A.G., Sadykhov, F.M., and Musaev, M.R., Tsiklopentadien i ego prevrashcheniya (Cyclopentadiene and Its Transformations), Baku: Gorgud, 1998.
125. Tatsuta, K., Adv. Synth. Catal., 2001, vol. 343, p. 145.

[^0]: ${ }^{\text {a }}$ Abr stands for N-methyltryptophane.

